A Combinatorial Algorithm for Minimizing the Maximum Laplacian Eigenvalue of Weighted Bipartite Graphs
نویسندگان
چکیده
We give a strongly polynomial time combinatorial algorithm to minimise the largest eigenvalue of the weighted Laplacian of a bipartite graph G = (W ∪B,E). This is accomplished by solving the dual graph embedding problem which arises from a semidefinite programming formulation. In particular, the problem for trees can be solved in time O(|W ∪B|).
منابع مشابه
META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملOn the least signless Laplacian eigenvalue of a non-bipartite connected graph with fixed maximum degree
In this paper, we determine the unique graph whose least signless Laplacian eigenvalue attains the minimum among all non-bipartite unicyclic graphs of order n with maximum degree Δ and among all non-bipartite connected graphs of order n with maximum degree Δ, respectively.
متن کاملA combinatorial algorithm for weighted stable sets in bipartite graphs
Computing a maximum weighted stable set in a bipartite graph is considered wellsolved and usually approached with preflow-push, Ford-Fulkerson or network simplex algorithms. We present a combinatorial algorithm for the problem that is not based on flows. Numerical tests suggest that this algorithm performs quite well in practice and is competitive with flow based algorithms especially in the ca...
متن کاملBipartite graphs with small third Laplacian eigenvalue
In this paper, all connected bipartite graphs are characterized whose third largest Laplacian eigenvalue is less than three. Moreover, the result is used to characterize all connected bipartite graphs with exactly two Laplacian eigenvalues not less than three, and all connected line graphs of bipartite graphs with the third eigenvalue of their adjacency matrices less than one. c © 2003 Elsevier...
متن کاملEla Quadratic Forms on Graphs with Application to Minimizing the Least Eigenvalue of Signless Laplacian over Bicyclic Graphs
Given a graph and a vector defined on the graph, a quadratic form is defined on the graph depending on its edges. In order to minimize the quadratic form on trees or unicyclic graphs associated with signless Laplacian, the notion of basic edge set of a graph is introduced, and the behavior of the least eigenvalue and the corresponding eigenvectors is investigated. Using these results a characte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015